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Information

Welcome to the Electronics and Signal Processing exam. Please read carefully the information below.

How to write your solution
Please use a pen and not a pencil. Make sure your hand writing is understandable by others.
Drawings do not need to be beautiful/perfect but it is important that they are easy to understand
and there are no ambiguities (e.g. a gate which could be an OR or an AND, but it is not clear which
one it is, label it to avoid confusion).
Each solution has to be justified and the steps to get there have to be explicitly written
down, only providing the final outcome will lead to zero points. On every page please indicate
which problem you are working on. If you separate the pages please indicate your name and student
ID on every page.
For your convenience, you can find a page with basic equations related to the course material at the
end of this document.

This work is licensed under Creative Commons Attribution-ShareAlike 4.0 Unported (CC BY-SA 4.0)
https://creativecommons.org/licenses/by-sa/4.0/ by Elisabetta Chicca, Tesse Tiemens, Ole Richter,
Madison Cotteret (c) University of Groningen 2023.
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Problem 1 (12 points)
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Figure 1: Resistor network.

Consider the circuit in Figure 1 and the related parameters: R1 = 4 kΩ, R2 = 4 kΩ, R3 = 2 kΩ,
R4 = 2 kΩ, Vs = 12 V , Is = 1 mA.

(a) (4 points) Using the parameters provided above, calculate the equivalent resistance Req seen by
RL (consider RL an open circuit and calculate the resistance between the two open nodes).

(b) (5 points) Using the parameters provided above, calculate the Thévenin equivalent voltage Vth

seen by RL.

(c) (1 points) Draw the Thévenin equivalent circuit including RL as load.

(d) (2 points) Given that RL = 6kΩ, calculate the current flowing through and the voltage across
the load resistance RL. If you do not have values for Vth and Req calculated from the previous
questions use the following incorrect values: Vth = 1 V and Req = 1 kΩ.
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Problem 1 - Solution

Point a)

We redraw the circuit as seen in Fig. 2. If we now replace the generators with their internal resistors,
(that means the voltage source acts as a short circuit and the current source acts as an open circuit)
we see that the equivalent resistance seen by RL is:

Req = R3 +R2//R1 = R3 +
R1R2

R1 +R2
= 2kΩ +

4 · 4
4 + 4

kΩ

So Req = 4kΩ.

Alternatively, one could notice that R1 = R2 = 2R and R3 = R4 = R = 2 Ω:

Req = R3 +R2//R1 = R+ 2R//2R = R+R = 4 kΩ

+
−V

R1

R2

R3

R4

I

Figure 2: Thevenin Equivalent R1: Step 1.

Point b)

Solution I

The equivalent generator can be calculated using the superposition principle. Replacing the current
source with an open circuit as in figure 3.VOCV , the current through R3 and R4 must be zero, as R4

leads to a dead end. This means that the contribution of the voltage source can be derived thanks to
the potential divider equation:

VOCV =
R2

R1 +R2
· VS =

4

4 + 4
· 12V = 6V

Alternatively, using notation introduced in the solution of a)

VOCV =
R2

R1 +R2
· VS =

2R

4R
· VS =

1

2
· 12V = 6V

To find the contribution from the current source, we replace the voltage source with a short-circuit
see figure 3.VOCI . The open circuit voltage is given by

VOCI = −I(R3 +R1//R2) = −1mA · (2 + 4//4)kΩ = −4V.
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By the superposition principle, the equivalent voltage seen by the resistor is the sum of the voltages
calculated above, so

VOC = VOCI + VOCV = −4V + 6V = 2V

V

R1

R2

R3

R1 R2

R3

R4

I

VOCV:

VOCI:

+
-

R4

S

S

Figure 3: Superposition principle.

Solution II

Alternatively nodal analysis can be used to derive VOC . Let us first apply KCL at the node where R1,
R2 and R3 are connected, from now on referred as Vx:

Vx − VS

2R
+

Vx

2R
+

Vx − VOC

R
= 0

Vx

(
1

2
+

1

2
+ 1

)
=

VS

2
+ VOC

Vx =
VS

4
+

VOC

2
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Now we apply KCL to VOC :
VOC − Vx

R
+ IS = 0

VOC − Vx +RIS = 0

Vx = VOC +RIS

We can put the two expressions for Vx together:

VOC +RIS =
VS

4
+

VOC

2

VOC

2
=

VS

4
−RIS

VOC =
VS

2
− 2RIS = 6 V − 2 · 2 V = 2 V

Solution III

Alternatively we can derive the short circuit current ISC and use it to calculate the open circuit voltage
VOC = ISCReq. We use again the superposition principle. When there is only the voltage source, we
need to compute the current flowing through R3. The voltage Vx across R3 can be written using the
potential divider equation:

Vx =
R3//R2

R1 +R3//R2
VS =

2
3R

2R+ 2
3R

VS =
VS

4

ISCV =
Vx

R3
=

Vs

4R
=

12 V

4 · 2 kΩ
= 1.5 mA

When there is only the current source ISCI = −1 mA.
Adding these two results together,

ISC = ISCI + ISCV = 1.5− 1mA = 0.5mA

Last, we find the equivalent voltage

VSC = ISCReq = 0.5 · 4 kΩ = 2 V

Point c)

We can use the answers from points a) and b) to redraw the circuit as shown in Figure 4. The sources
and resistors (except for RL) have been replaced by a single voltage source in series with a single
resistor such that the voltage between the nodes around RL is equivalent to the original situation.

4kΩ

−
+

2V RL

Figure 4: Thevenin equivalent circuit
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Point d)

The total resistance is made up of the equivalent resistance Req = 4kΩ and the load resistance RL =
6kΩ connected in series, yielding

Rtot = 4kΩ + 6kΩ = 10kΩ.

This sets the current through the circuit at

I = IL = 2V/10kΩ = 0.2mA,

making the voltage over RL be

VL = RLI = 6kΩ · 0.2mA = 1.2V.

Remarks

This question is comparable to the Top Problem from Week 2. The number and type of sources and
resistors is identical (1 voltage source and 1 current source, 4 resistors).
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Problem 2 (17 points)

R
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C L R
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+
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Figure 5: RLC circuit.

Consider the circuit in Figure 5. Assume sinusoidal regime, ideal components and the following
parameters: C = 0.7 F , L = 0.5 H, R = 1 Ω, RL = 5 Ω, ω0 = 2 rad s−1.

(a) (3 points) Without any calculation, but only reasoning about the behavior of each element in
the circuit, describe the behavior of

H(ω) =
iout
vin

for low (ω → 0) and high (ω → ∞) frequencies.

(b) (8 points) Using the parameters provided above, calculate the transfer function H(ω0).

You may assume as true that H(ω = 1 rad s−1) = 0.11 + 0.75j AV −1 and H(ω = 3 rad s−1) =
0.07− 0.08j AV −1.

(c) (3 points) Assuming vin(t) = −
√
2sin(3t) V , determine iout(t), giving your answer in the form

|I| cos(ωt+ ϕ).

(d) (3 points) Assume instead that vin(t) = 2 cos(3t) + cos(t) V . Using the superposition principle,
find z.
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Problem 2 - Solution

Point a)

For low frequencies (ω → 0 rad/s) the capacitor impedance ZC → ∞, while the inductor impedance
ZL → 0. Thus the capacitor may be replaced by an open circuit, and the inductor by a short circuit.
Thus all current flows through the inductor and iout = 0 and so H(jω) → 0.

For high frequencies (ω → ∞ rad/s) the capacitor impedance ZC → 0, while the inductor impedance
ZL → ∞. Thus the capacitor may be replaced by a short circuit, and the inductor by an open circuit.
Thus all current flows through the capacitor and iout = 0 and so H(jω) → 0.

Point b)

Solution I

We first calculate the impedance of the 3 parallel components.

Z∥ =
[
Z−1
C + Z−1

L + Z−1
RL

]−1
=

[
jωC +

1

jωL
+

1

RL

]−1

=
[
1.4j − 1j + 0.2

]−1
Ω =

[
0.2 + 0.4j

]−1
Ω

Z∥ = (1− 2j) Ω

Our effective circuit is then the resistor R in series with Z∥. We apply the voltage divider equation to
find the voltage across Z∥

vout = v∥ =
Z∥

Z∥ +R
vin =

1− 2j

1− 2j + 1
vin =

1− 2j

2− 2j
vin

vout = (0.75− 0.25j)vin

We can then derive H(ω0):

H(ω0) =
iout
vin

=
1

RL

vout
vin

=
1

RL
(0.75− 0.25j) =

1

5
(0.75− 0.25j)

= 0.15− 0.05j Ω−1 =

√
10

20
exp(j arctan(−1/3)) Ω−1

Solution II

Alternatively, we can derive the transfer function using the symbolic representation and substitute the
values only at the end.

1

Z∥
=

1

ZC
+

1

ZL
+

1

RL
= jωC +

1

jωL
+

1

RL

As above, we can write the output voltage using the potential divider equation:
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vout =
Z∥

R+ Z∥
vin

H(ω) =
iout
vin

=
vout
RL

· 1

vin
=

Z∥

RL(R+ Z∥)
vin

1

vin
=

1

RL

(
R
Z∥

+ 1
) =

1

RL

(
jωRC + R

jωL + R
RL

+ 1
)

=
1

(RL +R) + jRRL

(
ωC + 1

ωL

) =
(RL +R)− jRRL

(
ωC + 1

ωL

)
(RL +R)

2
+R2R2

L

(
ωC + 1

ωL

)2
We can sustitute ω0 to find the same result as in “Solution I”:

H(ω0) =
6− j · 5

(
2 · 0.7− 1

2·0.5
)

62 + 52
(
2 · 0.7− 1

2·0.5
)2 =

6− j · 5 (1.4− 1)

62 + 52 (1.4− 1)
2 =

6− 2 · j
62 + 22

=
6− 2 · j

40
= 0.15− 0.05 · j Ω−1

Point c)

This requires applying the given transfer function correctly, and afterwards working out the result in
complex numbers algebra.

iout = H(3)vin
Re
=

(
0.07− 0.08j)

(
−
√
2e3jt+

π
2

) Re
=

(√113

100
e−j arctan 8

7

)(√
2ejπe3jt+

π
2

)
Re
=

√
226

100
ej[3t+

3π
2 −arctan 8

7 ]
Re
=

√
226

100
cos

(
3t+

3π

2
− arctan

8

7

)
A ≈ 0.150 cos(3t+ 3.86 rad) A

(degree = 221o)
Either the exact answer or the approximate answer (to reasonable number of significant figures) are
awarded full marks. Units are not optional.

Point d)

Since the voltage input is a sum of two inputs with different frequencies, then by the superposition
principle we can consider the contribution to iout for each term separately. If part b) was done correctly,
then we use the two transfer functions.

H(3) = 0.07− 0.08j =

√
113

100
e−j arctan 8

7 Ω−1

H(1) = 0.11 + 0.75j =
13
√
34

100
ej arctan

75
11 Ω−1

and then apply these magnitudes and phase differences to the input voltage terms separately.

iout =

√
110

50
cos

(
3t− arctan

8

7

)
+

13
√
34

100
cos

(
t+ arctan

75

11

)
A

≈ 0.213 cos(3t− 0.852) + 0.758 cos(t+ 1.43) A

Note that if any of the arctan’s are evaluated in degrees, then unless the t-prefactor frequencies have
been converted to degrees/sec, then the answer is wrong.

Remarks

This question is in complexity and type of tasks comparable to top problem from week 3. Finding
limits by inspection and only reasoning as in subquestion a) was extensively practiced during the
lectures.
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Problem 3 (22 points)

va
vout

R1
C1

C2

R2

R3
ib

Figure 6: Circuit with OPAMP.

Consider the circuit in Figure 6. The input voltage va and input current ib operate in a sinu-
soidal regime with the same frequency ω0. All components are ideal components. Use parameters
R1 = 700 Ω, R2 = 100 Ω, R3 = 1 kΩ, C1 = C2 = 10 µF , ω0 = 1000 rad s−1.

By the superposition principle, vout can be written as

vout = H1(ω) · va +H2(ω) · ib

(a) (8 points) Using the parameters provided above, calculate the partial transfer function H1(ω0).

(b) (8 points) Similarly, calculate the partial transfer function H2(ω0).

From now on take |ib| = 0 A.

(c) (4 points) What is the gain
∣∣∣ vout

va

∣∣∣ as ω → 0? What about ω → ∞?

(d) (2 points) Assuming va(t) = cos(ω0t) V, determine vout(t).
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Problem 3 - Solution

Part a)

1. Principle of superposition → consider only va as a source, consider ib to be an open circuit.

2. Op amp ideal → no current into/out of input terminals, → voltage at + terminal v+ = 0.

3. Since op amp ideal and in negative feedback, v− = v+ = 0.

Now what would be quite useful is to find the impedance of the R1 and C1 in series, and R2 and C2

in parallel. We denote them

Z1 = R1 +
1

jωC1
= 700− j

1000 · 10µF
= (700− 100j) Ω

and

Z2 = R2 ∥ ZC2
=

[ 1

R2
+ jωC2

]−1

=
[ 1

100
+ j · 1000 · 10µF

]−1
=

[ 1

100
+

1

100
j
]−1

= (50− 50j) Ω

Alternatively, without directly substituting values:

Z1 = R1 +
1

jωC1
=

1 + jωC1R1

jωC1
=

C1R1ω − j

C1ω

and

Z2 = R2 ∥ ZC2 =
[ 1

R2
+ jωC2

]−1

=
R2

1 + jωR2C2

Now we apply the superposition principle to the top half of our circuit and express v− using the
potential divider equation.

v− =
Z2

Z1 + Z2
va +

Z1

Z1 + Z2
vout = 0

Z1

Z1 + Z2
vout = − Z2

Z1 + Z2
va

vout = −Z2

Z1
va

⇒ H1(ω0) = −Z2

Z1
= − 50− 50j

700− 100j
= −0.08 + 0.06j

or substituting numerical values later:

H1(ω0) = −Z2

Z1
= −

R2

1+jωR2C2

C1R1ω−j
C1ω

= − R2

1 + jωR2C2

C1ω

C1R1ω − j
= − C1R2ω

C1R1ω + C2R2ω + j(R1R2C1C2ω2 − 1)

= − 1

7 + 1 + j(7− 1)
=

1

8 + 6j
= − 1

100
(8− 6j) = −0.08 + 0.06j

Note that the solution may be found without using the voltage divider equation, by just equating
the current through the Z1 and Z2 components:

va − 0

Z1
+

vout − 0

Z2
= 0 =⇒ vout

Z2
= − va

Z1
⇒ H1(ω) = −Z2

Z1
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Part b)

1. Principle of superposition → consider only ib as a source, va = 0.

2. Op amp ideal → no current into/out of input terminals, → all current ib goes through R3 →
voltage at + terminal v+ = ibR3.

3. Since op amp ideal and in negative feedback, v− = v+ = ibR3.

Solution I

Consider the new voltage divider circuit ”Ground− [Z1]− ibR3 − [Z2]− vout”:

ibR3 = vout
Z1

Z1 + Z2
=⇒ H2(ω0) = R3

Z1 + Z2

Z1
= 1000 ·

(
1.08− 0.06j

)
VA−1 = (1080− 60j) VA−1

Solution II

H2(ω0) = R3
Z1 + Z2

Z1
= R3(1 +

Z2

Z1
) = R3(1−H1(ω0)) = R3

(
1 +

C1R2ω

C1R1ω + C2R2ω + j(R1R2C1C2ω2 − 1)

)
= 1k(1 + 0.08− 0.06j) VA−1 = (1080− 60j) VA−1

Solution III

By using KCL at v−:

0 =
0− v−
Z1

+
vout − v−

Z2
⇐⇒ vout

Z2
= v−

(
1

Z1
+

1

Z2

)
⇐⇒ vout =

Z1 + Z2

Z1
v−

Part c)

For ω → 0, ZC1 → ∞, so Z1 → ∞ while Z2 → R2. Therefore from part a), we see that

H1 ∝ −Z2

Z1
→ −R2

∞
= 0

and so vout/va → 0.

For ω → ∞, ZC1 → 0, so Z1 → R1 while Z2 → 0. Therefore from part a) we see that

H1 ∝ −Z2

Z1
→ 0

R1
= 0

and so vout/va → 0.

Part d)

We know that H1(ω0) = −0.08 + 0.06j = 1
10e

j
[

π
2 +arctan 4

3

]
, taking care of the fact that we are in the

positive Im, negative Re quadrant.
Then the answer is given by:

vout(t) =
1

10
cos

(
ω0t+

π

2
+ arctan

4

3

)
V ≈ 1

10
cos(ω0t+ 2.50rad) V

Remarks

Question a) is comparable to the integrator circuit which was part of the top problems in week 4. Part
b) is similar but simpler because vin does not contribute. Similarly as for problem 2, solving limits by
inspection was practiced in the lectures.
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Problem 4 (19 Points)

Legend:
A ·B = AND

A+B = OR

A = NOT A

(a) (8 points) Logic minimisation with Karnaugh maps

Y = (D · C ·B ·A) + (D · C ·B ·A) + (D · C ·B ·A) + (D · C ·B ·A) + (D · C ·B ·A)

+(D · C ·B ·A) + (D · C ·B ·A) + (D · C ·B ·A) + (D · C ·B ·A)

Using a Karnaugh map, derive an optimised expression to implement the above logical func-
tion.

(b) (3 points) Logic mapping and minimisation with Boolean algebra

Convert the circuit shown in Fig. 7 into written Boolean form. Use Boolean algebra to
simplify the equation and show that the final result is equal to the following expression:

Y = (A ·B · (C +D)) + (A · (B +D))

(c) (8 points) NAND logic

Convert the simplified expression provided in part b) to NAND logic using Boolean algebra. Use
as many 2-input NAND gates (NAND2) as needed (no other kind of gates are allowed) to
draw the circuit to implement the combinational logic.

A B C D

Y

Figure 7: Logic circuit.
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Problem 4 - Solution

Point a)

The Karnaugh map is drawn with gray code, so only one digit changes per step, with 2 variables
vertical and 2 horizontal. Each of the given terms (e. g. D · C · A · B) appears as a one in the map
(e.g. in the cell with B = C = D = 0 and A = 1). All other positions are filled with a zero. Mark
all groups of 16 (all variables reduced), 8 (3 variables reduced), 4 (two variables reduced), 2 (one
variable reduced) that you can find, individual positions can be used in multiple groups. Remove any
redundant group. Groups can be formed over the edge.

BA

DC

00 01 11 10

00

01

11

10

1

1

1

1 1 11

1

10 0

0 0

0 0 0

DC

BA

00 01 11 10

00

01

11

10

1 1

1 1

1

1

1

1 1

0

0 0 0

0

0 0

AB

CD

00 01 11 10

00

01

11

10

1 1

1 1

1 1 11

1

00

0 0 0

00

CD

AB

00 01 11 10

00

01

11

10

1

1

1

1

1

1

1

11

0

0

0 0 0

0 0

y = (green) + (yellow) + (red)

y = (A ·D) + (C ·D) + (A ·B ·D)

A ·B = AND

A+B = OR

A = NOT A

Remarks

The Karnaugh map for this question is comparable to the one provided in the solution of the top
problem of Week 8, as it is the task to find the reduced formula.
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Point b)

First write the formula:

y = (A ·B · C) + (B ·A ·D) + (B ·A) + (A ·D)

Now use the rule of distributive law to first extract A ·B and then A

y = (A ·B · (C +D)) + (B ·A) + (A ·D)

y = (A ·B · (C +D)) + (A · (B +D))

Point c)

y = (A ·B · (C +D)) + (A · (B +D))

The De Morgan’s laws can be used to turn all gates into 2-input NAND gates, after the first step of
logic simplification. First change the formula to only have 2-input gates

y = ((A ·B) · (C +D)) + (A · (B +D))

Introduce double inversion to every inner 2-input OR expressions:

y = ((A ·B) · (C +D)) + (A · (B +D))

Swap gates from 2-input OR gates to 2-input NAND gates by inverting the inputs:

y = ((A ·B) · (C ·D)) + (A · (B ·D))

Remove obsolete double inversion on single variables:

y = ((A ·B) · (C ·D)) + (A · (B ·D))

Add double inversion to the outer 2-input OR gate and swap to NAND2:

y = ((A ·B) · (C ·D)) + (A · (B ·D))

y = ((A ·B) · (C ·D)) · (A · (B ·D))

Convert the last remaining AND2 to NAND2 by adding double inversion:

y = ((A ·B) · (C ·D)) · (A · (B ·D))

Draw the circuit, use a NAND2 with both inputs connected together to implement a NOT gate. The
resulting circuit is shown in Fig. 8.

Remarks

The use of the Morgan’s laws for the translation of arbitrary logic functions to NAND and NOR logic
was extensively covered in the lecture (both in graphical and algebraic form). Top problem from Week
7 has covered a similar problem, providing more practice with Boolean algebra operations.
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A B C D

Y

Figure 8: The 2-input NAND circuit.
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Electronics and Signal Processing - Formula Sheet

Ohm’s law: V = ZI Capacitors: V = Q
C = 1

C

∫
I dt Inductors: V = L dI

dt

Complex impedance: ZR = R , ZL = jωL , ZC = 1
jωC Reactance: X = Im(Z)

Quality ratio : Q = f0
B (for bandwidth B and resonance frequency f0)

Root-mean-square voltage of sinusoidal signal = 0.707 of amplitude

Voltage gain: Av = Vo

Vi
dB voltage gain = 20 log10(

Vo

Vi
)

Closed loop gain: G = A
1+AB , where A is the forward gain and B is the feedback gain.

Output voltage of an OpAmp: Vout = A (V+ − V−)

Characteristic impedance of a cable: Zeq =
√

r
2ωc (1− j) (RC cable), Zeq =

√
l
c (LC cable)

Speed of signal in a cable: v = 1√
lc

(LC cable)

Effective impedance seen by a source connected to a cable (length Λ, Z0) and a load with impedance

Z: Zeff = Z0
Z−jZ0tan(kΛ)
Z0−jZtan(kΛ) , where k = 2π

λ = ω
√
lc

Boolean Algebra

• Commutative laws: AB = BA , A+B = B +A

• Distributive laws: A(B + C) = AB +AC , A+BC = (A+B)(A+ C)

• Associative laws: A(BC) = (AB)C , A+ (B + C) = (A+B) + C

• Absorption law: A+AB = A (A+B) = A

• De Morgan’s laws: A+B = A ·B , AB = A+B

• Other: A+A ·B = A+B , A (A+B) = AB

Complex Numbers Algebra

|z| =
√

Re(z)2 + Im(z)2

ejϕ = cos(ϕ) + j sin(ϕ) =⇒ ej
π
2 = j , e−j π

2 = −j , ejπ = −1 = j2

cos(θ) = ejθ+e−jθ

2 sin(θ) = ejθ−e−jθ

2j
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